Fuzzy-probabilistic multi agent system for breast cancer risk assessment and insurance premium assignment
نویسندگان
چکیده
In this paper, we present an agent-based system for distributed risk assessment of breast cancer development employing fuzzy and probabilistic computing. The proposed fuzzy multi agent system consists of multiple fuzzy agents that benefit from fuzzy set theory to demonstrate their soft information (linguistic information). Fuzzy risk assessment is quantified by two linguistic variables of high and low. Through fuzzy computations, the multi agent system computes the fuzzy probabilities of breast cancer development based on various risk factors. By such ranking of high risk and low risk fuzzy probabilities, the multi agent system (MAS) decides whether the risk of breast cancer development is high or low. This information is then fed into an insurance premium adjuster in order to provide preventive decision making as well as to make appropriate adjustment of insurance premium and risk. This final step of insurance analysis also provides a numeric measure to demonstrate the utility of the approach. Furthermore, actual data are gathered from two hospitals in Mashhad during 1 year. The results are then compared with a fuzzy distributed approach.
منابع مشابه
Breast Cancer Risk Assessment Using adaptive neuro-fuzzy inference system (ANFIS) and Subtractive Clustering Algorithm
Introduction: The adaptive neuro-fuzzy inference system (ANFIS) is a soft computing model based on neural network precision and fuzzy decision-making advantages, which can highly facilitate diagnostic modeling. In this study we used this model in breast cancer detection. Methodology: A set of 1,508 records on cancerous and non-cancerous participant’s risk factors was used. First,...
متن کاملBreast Cancer Risk Assessment Using adaptive neuro-fuzzy inference system (ANFIS) and Subtractive Clustering Algorithm
Introduction: The adaptive neuro-fuzzy inference system (ANFIS) is a soft computing model based on neural network precision and fuzzy decision-making advantages, which can highly facilitate diagnostic modeling. In this study we used this model in breast cancer detection. Methodology: A set of 1,508 records on cancerous and non-cancerous participant’s risk factors was used. First,...
متن کاملIdentifying and classifying the factors affecting risk in automobile hull insurance in Iran using fuzzy Delphi method and factor analysis
Automobile hull insurance has attracted much attention due to the high rate of vehicle applications in daily lives. Since purchasing these policies is optional in Iran and their premium rates are set competitively, a competition is formed among the insurance companies for attracting low risk drivers. However, most of the insurers still use comparative rates and pay no or less attention to the f...
متن کاملA Fuzzy Rule-based Expert System for the Prognosis of the Risk of Development of the Breast Cancer
Soft Computing techniques play an important role for decision in applications with imprecise and uncertain knowledge. The application of soft computing disciplines is rapidly emerging for the diagnosis and prognosis in medical applications. Between various soft computing techniques, fuzzy expert system takes advantage of fuzzy set theory to provide computing with uncertain words. In a fuzzy exp...
متن کاملMulti-granulation fuzzy probabilistic rough sets and their corresponding three-way decisions over two universes
This article introduces a general framework of multi-granulation fuzzy probabilistic roughsets (MG-FPRSs) models in multi-granulation fuzzy probabilistic approximation space over twouniverses. Four types of MG-FPRSs are established, by the four different conditional probabilitiesof fuzzy event. For different constraints on parameters, we obtain four kinds of each type MG-FPRSs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical informatics
دوره 45 6 شماره
صفحات -
تاریخ انتشار 2012